Computing Hilbert class polynomials with the Chinese remainder theorem

نویسنده

  • Andrew V. Sutherland
چکیده

We present a space-efficient algorithm to compute the Hilbert class polynomial HD(X) modulo a positive integer P , based on an explicit form of the Chinese Remainder Theorem. Under the Generalized Riemann Hypothesis, the algorithm uses O(|D|1/2+ log P ) space and has an expected running time of O(|D|1+ ). We describe practical optimizations that allow us to handle larger discriminants than other methods, with |D| as large as 1013 and h(D) up to 106. We apply these results to construct pairing-friendly elliptic curves of prime order, using the CM method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Igusa Class Polynomials via the Chinese Remainder Theorem

We present a new method for computing the Igusa class polynomials of a primitive quartic CM field. For a primitive quartic CM field, K, we compute the Igusa class polynomials modulo p for certain small primes p and then use the Chinese remainder theorem and a bound on the denominators to construct the class polynomials. We also provide an algorithm for determining endomorphism rings of Jacobian...

متن کامل

Computing Hilbert Class Polynomials

We present and analyze two algorithms for computing the Hilbert class polynomial HD. The first is a p-adic lifting algorithm for inert primes p in the order of discriminant D < 0. The second is an improved Chinese remainder algorithm which uses the class group action on CM-curves over finite fields. Our run time analysis gives tighter bounds for the complexity of all known algorithms for comput...

متن کامل

Kineski teorem o ostatcima za polinome

We start by giving a brief description of the classical Chinese remainder theorem for integers, after whichwe define the greatest common divisor of two polynomials and congruences modulo a polynomial. These concepts allow us to state and prove the Chinese remainder theorem for polynomials. After presenting some important consequences of that theorem, we give its applications to the factorizatio...

متن کامل

A simplified setting for discrete logarithms in small characteristic finite fields

We present an algorithm for constructing genus 2 curves over a finite field with a given number of points on its Jacobian. This has important applications in cryptography, where groups of prime order are used as the basis for discrete-log based cryptosystems. For a quartic CM field K with primitive CM type, we compute the Igusa class polynomials modulo p for certain small primes p and then use ...

متن کامل

An extension theorem for finite positive measures on surfaces of finite‎ ‎dimensional unit balls in Hilbert spaces

A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009